Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Reprod Med Biol ; 23(1): e12575, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571513

RESUMO

Background: The last phase of folliculogenesis is driven by follicle-stimulating hormone (FSH) and locally produced insulin-like growth factors (IGFs), both essential for forming preovulatory follicles. Methods: This review discusses the molecular crosstalk of the FSH and IGF signaling pathways in regulating follicular granulosa cells (GCs) during the antral-to-preovulatory phase. Main findings: IGFs were considered co-gonadotropins since they amplify FSH actions in GCs. However, this view is not compatible with data showing that FSH requires IGFs to stimulate GCs, that FSH renders GCs sensitive to IGFs, and that FSH signaling interacts with factors downstream of AKT to stimulate GCs. New evidence suggests that FSH and IGF signaling pathways intersect at several levels to regulate gene expression and GC function. Conclusion: FSH and locally produced IGFs form a positive feedback loop essential for preovulatory follicle formation in all species. Understanding the mechanisms by which FSH and IGFs interact to control GC function will help design new interventions to optimize follicle maturation, perfect treatment of ovulatory defects, improve in vitro fertilization, and develop new contraceptive approaches.

2.
Mol Cell Endocrinol ; 577: 112030, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37499999

RESUMO

Ovulation is the pinnacle of folliculogenesis, a process that requires an interplay between the oocyte, the granulosa cells, and the theca cells (TCs). TCs are the only source of ovarian androgens, which play a vital role in female fertility. However, abnormally elevated androgen levels reduce fertility. Therefore, uncovering novel mechanisms regulating androgen synthesis in TCs is of great significance. We have shown that salt-inducible kinases (SIKs) regulate granulosa cell steroidogenesis. Here, we investigated whether SIKs regulate androgen production in TCs. SIK2 and SIK3 were detected in the TCs of mouse ovaries and isolated TCs. Next, TCs in culture were treated with luteinizing hormone (LH) in the presence or absence of a highly specific SIK inhibitor. SIK inhibition enhanced the stimulatory effect of LH on steroidogenic gene expression and androgen production in a concentration-dependent manner. SIK inhibition alone stimulated the expression of steroidogenic genes and increased androgen production. Activation of adenylyl cyclase with forskolin or emulation of increased intracellular cyclic AMP levels stimulated steroidogenesis, an effect that was enhanced by the inhibition of SIK activity. The stimulatory effect of downstream targets of cyclic AMP was also significantly augmented by SIK inhibition, suggesting that SIKs control targets downstream cyclic AMP. Finally, it is shown that SIK2 knockout mice have higher circulating testosterone than controls. This evidence shows that TCs express SIKs and reveal novel roles for SIKs in the regulation of TC function and androgen production. This information could contribute to uncovering therapeutic targets to treat hyperandrogenic diseases.

3.
Mol Cell Endocrinol ; 559: 111807, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36279967

RESUMO

Preovulatory granulosa cell (GC) differentiation is essential for the maturation and release of oocytes from the ovary. We have previously demonstrated that follicle-stimulating hormone (FSH) and insulin-like growth factors (IGFs) closely interact to control GC function. Similarly, we showed that GATA4 mediates FSH actions and it is required for preovulatory follicle formation. This report aimed to determine in vivo the effect of FSH on GATA4 phosphorylation and to investigate whether FSH and IGF1 interact to regulate GATA4 activity. In rat ovaries, treatment with equine chorionic gonadotropin (eCG) increased the phosphorylation of GATA4, which was confined to the nucleus of GCs. Using primary rat GCs, we observed that GATA4 phosphorylation at serine 105 increases the transcriptional activity of this transcription factor. Like FSH, IGF1 stimulated GATA4 phosphorylation at serine 105. Interestingly, GATA4 phosphorylation was significantly higher in cells cotreated with FSH and IGF1 when compared to FSH or IGF1 alone, suggesting that IGF1 augments the effects of FSH on GATA4. It was also found that the enhancing effect of IGF1 requires AKT activity and is mimicked by the inhibition of glycogen synthase kinase-3 ß (GSK3ß), suggesting that AKT inhibition of GSK3ß may play a role in the regulation of GATA4 phosphorylation. The data support an important role of the IGF1/AKT/GSK3ß signaling pathway in the regulation of GATA4 transcriptional activity and provide new insights into the mechanisms by which FSH and IGF1 regulate GC differentiation. Our findings suggest that GATA4 transcriptional activation may, at least partially, mediate AKT actions in GCs.


Assuntos
Hormônio Foliculoestimulante , Fator de Crescimento Insulin-Like I , Feminino , Animais , Cavalos , Ratos , Hormônio Foliculoestimulante/farmacologia , Hormônio Foliculoestimulante/metabolismo , Fosforilação , Fator de Crescimento Insulin-Like I/farmacologia , Fator de Crescimento Insulin-Like I/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Células Cultivadas , Células da Granulosa/metabolismo , Serina/metabolismo , Fator de Transcrição GATA4/metabolismo
4.
Front Endocrinol (Lausanne) ; 13: 1026358, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246922

RESUMO

The optimal development of preovulatory follicles needs follicle-stimulating hormone (FSH). Recent findings revealed that salt-inducible kinases (SIKs) inhibit FSH actions in humans and rodents. This report seeks to increase our understanding of the molecular mechanisms controlled by SIKs that participate in the inhibition of FSH actions in primary rat granulosa cells (GCs). The results showed that FSH causes a transient induction of Sik1 mRNA. In contrast, SIK inhibition had no effects on FSH receptor expression. Next, we determined whether SIK inhibition enhances the effect of several sequential direct activators of the FSH signaling pathway. The findings revealed that SIK inhibition stimulates the induction of steroidogenic genes by forskolin, cAMP, protein kinase A (PKA), and cAMP-response element-binding protein (CREB). Strikingly, FSH stimulation of CREB and AKT phosphorylation was not affected by SIK inhibition. Therefore, we analyzed the expression and activation of putative CREB cofactors and demonstrated that GCs express CREB-regulated transcriptional coactivators (CRTC2) and that FSH treatment and SIK inhibition increase the nuclear expression of this factor. We concluded that SIKs target the FSH pathway by affecting factors located between cAMP/PKA and CREB and propose that SIKs control the activity of CRTC2 in ovarian GCs. The findings demonstrate for the first time that SIKs blunt the response of GCs to FSH, cAMP, PKA, and CREB, providing further evidence for a crucial role for SIKs in regulating ovarian function and female fertility.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Receptores do FSH , Animais , Colforsina/metabolismo , Colforsina/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Hormônio Foliculoestimulante/metabolismo , Hormônio Foliculoestimulante/farmacologia , Células da Granulosa , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo , Ratos , Receptores do FSH/genética , Receptores do FSH/metabolismo , Transdução de Sinais/fisiologia
5.
Mol Hum Reprod ; 27(6)2021 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-33905521

RESUMO

Secreted frizzled-related protein-4 (SFRP4) belongs to a family of soluble ovarian-expressed proteins that participate in female reproduction, particularly in rodents. In humans, SFRP4 is highly expressed in cumulus cells (CCs). However, the mechanisms that stimulate SFRP4 in CCs have not been examined. We hypothesise that oocyte-secreted factors such as growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) are involved in the regulation of SFRP4. Human CCs were collected from patients undergoing fertility treatments and treated with GDF9 or BMP15 or their combination in the presence of FSH or vehicle. FSH treatment significantly decreased SFRP4 mRNA levels when compared with nontreated cells. However, SFRP4 mRNA levels were increased significantly by GDF9 plus BMP15 in a concentration-dependent manner in the presence or absence of FSH. The combination of GDF9 plus BMP15 also increased SFRP4 protein levels and decreased the activity of the ß-catenin/T cell factor-responsive promoter significantly. GDF9 plus BMP15 inhibited steroidogenic acute regulatory protein and LH/hCG receptor stimulation by FSH, while treatment with SFRP4 blocked the stimulatory effect of FSH on these genes. The evidence demonstrates that GDF9 and BMP15 act in coordination to stimulate SFRP4 expression and suggests that SFRP4 mediates the anti-luteinising effects of the oocyte in human CCs.


Assuntos
Proteína Morfogenética Óssea 15/farmacologia , Células do Cúmulo/efeitos dos fármacos , Fator 9 de Diferenciação de Crescimento/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Oócitos/fisiologia , Proteínas Proto-Oncogênicas/biossíntese , Proteína Morfogenética Óssea 15/administração & dosagem , Células Cultivadas , Células do Cúmulo/metabolismo , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Feminino , Hormônio Foliculoestimulante/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Fator 9 de Diferenciação de Crescimento/administração & dosagem , Humanos , Oócitos/química , Fosfoproteínas/biossíntese , Fosfoproteínas/genética , Cultura Primária de Células , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores do LH/biossíntese , Receptores do LH/genética , Especificidade da Espécie
6.
Endocrinology ; 161(7)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32343771

RESUMO

Follicle development is the most crucial step toward female fertility and is controlled mainly by follicle-stimulating hormone (FSH). In ovarian granulosa cells (GCs), FSH activates protein kinase A by increasing 3',5'-cyclic adenosine 5'-monophosphate (cAMP). Since cAMP signaling is impinged in part by salt-inducible kinases (SIKs), we examined the role of SIKs on the regulation of FSH actions. Here, we report that SIKs are essential for normal ovarian function and female fertility. All SIK isoforms are expressed in human and rodent GCs at different levels (SIK3>SIK2>SIK1). Pharmacological inhibition of SIK activity potentiated the stimulatory effect of FSH on markers of GC differentiation in mouse, rat, and human GCs and estradiol production in rat GCs. In humans, SIK inhibition strongly enhanced FSH actions in GCs of patients with normal or abnormal ovarian function. The knockdown of SIK2, but not SIK1 or SIK3, synergized with FSH on the induction of markers of GC differentiation. SIK inhibition boosted gonadotropin-induced GC differentiation in vivo, while the genomic knockout of SIK2 led to a significant increase in the number of ovulated oocytes. Conversely, SIK3 knockout females were infertile, FSH insensitive, and had abnormal folliculogenesis. These findings reveal novel roles for SIKs in the regulation of GC differentiation and female fertility, and contribute to our understanding of the mechanisms regulated by FSH. Furthermore, these data suggest that specific pharmacological modulation of SIK2 activity could be of benefit to treat ovulatory defects in humans and to increase the propagation of endangered species and farm mammals.


Assuntos
Fertilidade , Hormônio Foliculoestimulante/metabolismo , Células da Granulosa/enzimologia , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Feminino , Humanos , Isoenzimas/metabolismo , Camundongos , Camundongos Knockout , Ovulação , Cultura Primária de Células , Proteínas Serina-Treonina Quinases/genética , Ratos
7.
J Clin Endocrinol Metab ; 105(1)2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31588501

RESUMO

CONTEXT: Human granulosa cells (hGCs) produce and respond to insulin-like growth factor 2 (IGF2) but whether the oocyte participates in IGF2 regulation in humans is unknown. OBJECTIVE: To determine the role of oocyte-secreted factors (OSFs) such as growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) in IGF2 production by hGCs. DESIGN: Primary human cumulus GCs in culture. SETTING: University infertility center. PATIENTS OR OTHER PARTICIPANTS: GCs of women undergoing in vitro fertilization. INTERVENTION(S): Cells treated with GDF9 and BMP15 in the presence of vehicle, follicle-stimulating hormone (FSH), dibutyryl cyclic-AMP (dbcAMP), or mothers against decapentaplegic homolog (SMAD) inhibitors. MAIN OUTCOME MEASURE(S): Quantification of mRNA, protein, promoter activity, and DNA methylation. RESULTS: FSH stimulation of IGF2 (protein and mRNA) was significantly potentiated by the GDF9 and BMP15 (G+B) combination (P < 0.0001) in a concentration-dependent manner showing a maximal effect at 5 ng/mL each. However, GDF9 or BMP15 alone or in combination (G+B) have no effect on IGF2 in the absence of FSH. FSH stimulated IGF2 promoter 3 activity, but G+B had no effect on promoter activity. G+B potentiated IGF2 stimulation by cAMP. SMAD3 inhibitors inhibited G+B enhancement of IGF2 stimulation by FSH (P < 0.05) but had no effect on FSH induction. Moreover, inhibition of insulin-like growth factor receptor partially blocked G+B potentiation of FSH actions (P < 0.009). CONCLUSIONS: For the first time, we show that the oocyte actively participates in the regulation of IGF2 expression in hGCs, an effect that is mediated by the specific combination of G+B via SMAD2/3, which in turn target mechanisms downstream of the FSH receptor.


Assuntos
Meios de Cultivo Condicionados/farmacologia , Células da Granulosa/citologia , Fator de Crescimento Insulin-Like II/genética , Oócitos/metabolismo , Proteína Morfogenética Óssea 15/farmacologia , Células Cultivadas , Meios de Cultivo Condicionados/química , AMP Cíclico/metabolismo , Combinação de Medicamentos , Feminino , Hormônio Foliculoestimulante/genética , Hormônio Foliculoestimulante/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células da Granulosa/metabolismo , Fator 9 de Diferenciação de Crescimento/farmacologia , Humanos , Fator de Crescimento Insulin-Like II/metabolismo , Oócitos/citologia , Cultura Primária de Células/métodos
8.
J Steroid Biochem Mol Biol ; 190: 183-192, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30954507

RESUMO

Luteinizing hormone and human chorionic gonadotropin (hCG) bind to the luteinizing hormone/chorionic gonadotropin receptor (LHCGR). LHCGR is required to maintain corpus luteum function but the mechanisms involved in the regulation of LHCGR in human luteal cells remain incompletely understood. This study aimed to characterize the expression of LHCGR mRNA in primary human luteinized granulosa cells (hLGCs) obtained from patients undergoing in vitro fertilization and to correlate LHCGR expression with the response of hLGCs to hCG by assessing the expression of genes known to be markers of hCG actions. The results show that LHCGR expression is low in freshly isolated cells but recovers rapidly in culture and that hCG maintains LHCGR expression, suggesting a positive feedback loop. The activity of a LHCGR-LUC reporter increased in cells treated with hCG but not with follicle-stimulating hormone. Treatment with hCG also stimulated the expression of genes involved in steroidogenesis in a time-dependent manner. LHCGR promoter expression was found to be regulated by SP1, which we show is highly expressed in hLGCs. Moreover, SP1 inhibition prevented the stimulation of steroidogenic genes and the increase in LHCGR-LUC reporter activity by hCG. Finally, we provide evidence that a complex formed by SP1 and GATA4 may play a role in the maintenance of LHCGR expression. This report reveals the mechanisms involved in the regulation of the LHCGR and provides experimental data demonstrating that the proximal region of the LHCGR promoter is sufficient to drive the expression of this gene in primary hLGCs.


Assuntos
Regulação da Expressão Gênica , Células Lúteas/metabolismo , Receptores do LH/genética , Fator de Transcrição Sp1/metabolismo , Células Cultivadas , Gonadotropina Coriônica/metabolismo , Feminino , Fertilização in vitro , Humanos , Esteroides/metabolismo
9.
J Clin Endocrinol Metab ; 104(5): 1667-1676, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30541132

RESUMO

CONTEXT: The role of growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) on aromatase regulation is poorly understood in humans. OBJECTIVE: Determine GDF9 and BMP15 effects on FSH stimulation of estradiol production in primary human cumulus granulosa cells (GCs). We hypothesized that the combination of GDF9 and BMP15 potentiates FSH-induced aromatase expression. DESIGN: Primary human cumulus GCs in culture. SETTING: University infertility center. PATIENTS OR OTHER PARTICIPANTS: GCs of 60 women undergoing in vitro fertilization were collected. INTERVENTIONS: Cells were treated with GDF9 and/or BMP15 (GB) in the presence or absence of FSH, dibutyryl cAMP, or SMAD inhibitors. MAIN OUTCOME MEASURES: Promoter activity, mRNA, protein, and estradiol levels were quantified. RESULTS: FSH and GB treatment increased CYP19A1 promoter activity, mRNA, and protein levels as well as estradiol when compared with cells treated with FSH only. GB treatment potentiated cAMP stimulation of aromatase and IGF2 stimulation by FSH. GB effects were inhibited by SMAD3 inhibitors and IGF1 receptor inhibitors. GB, but not FSH, stimulates SMAD3 phosphorylation. CONCLUSION: The combination of GDF9 and BMP15 potently stimulates the effect of FSH and cAMP on CYP19a1 promoter activity and mRNA/protein levels. These effects translate into an increase in estradiol production. This potentiation seems to occur through activation of the SMAD2/3 and SMAD3 signaling pathway and involves, at least in part, the effect of the IGF system.


Assuntos
Aromatase/metabolismo , Células do Cúmulo/metabolismo , Hormônio Foliculoestimulante/metabolismo , Células da Granulosa/metabolismo , Oócitos/metabolismo , Aromatase/genética , Proteína Morfogenética Óssea 15/genética , Proteína Morfogenética Óssea 15/metabolismo , Células Cultivadas , Células do Cúmulo/citologia , Feminino , Células da Granulosa/citologia , Fator 9 de Diferenciação de Crescimento/genética , Fator 9 de Diferenciação de Crescimento/metabolismo , Humanos , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Oócitos/citologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo
10.
Vitam Horm ; 107: 193-225, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29544631

RESUMO

GATA4 and GATA6 are the sole GATA factors expressed in the ovary during embryonic development and adulthood. Up today, GATA4 and GATA6 are the only transcription factors that have been conditionally deleted during ovarian development and at each major stage of follicle maturation. The evidence from these transgenic mice revealed that GATA4 and GATA6 are crucial for follicles assembly, granulosa cell differentiation, postnatal follicle growth, and luteinization. Thus, conditional knockdown of both factors in the granulosa cells at any stage of development leads to female infertility. GATA targets impacting female reproduction include genes involved in steroidogenesis, hormone signaling, ovarian hormones, extracellular matrix organization, and apoptosis/cell division.


Assuntos
Envelhecimento , Fatores de Transcrição GATA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Modelos Biológicos , Ovário/fisiologia , Reprodução , Animais , Apoptose , Desenvolvimento Embrionário , Matriz Extracelular/fisiologia , Feminino , Atresia Folicular , Fatores de Transcrição GATA/antagonistas & inibidores , Fatores de Transcrição GATA/genética , Humanos , Luteinização , Ciclo Menstrual , Oogênese , Ovário/citologia , Ovário/embriologia , Ovário/crescimento & desenvolvimento , Ovulação
11.
Reproduction ; 154(6): 745-753, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28874516

RESUMO

The regulation of AMH production by follicular cells is poorly understood. The purpose of this study was to determine the role of the oocyte-secreted factors, growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15), on AMH production in primary human cumulus cells. Cumulus cells from IVF patients were cultured with a combination of GDF9, BMP15, recombinant FSH and specific signaling inhibitors. Stimulation with GDF9 or BMP15 separately had no significant effect on AMH mRNA levels. In contrast, simultaneous stimulation with GDF9 and BMP15 (G + B) resulted in a significant increase in AMH mRNA expression. Increasing concentration of G + B (0.6, 2.5, 5 and 10 ng/mL) stimulated AMH in a dose-dependent manner, showing a maximal effect at 5 ng/mL. Western blot analyses revealed an average 16-fold increase in AMH protein levels in cells treated with G + B when compared to controls. FSH co-treatment decreased the stimulation of AMH expression by G + B. The stimulatory effect of G + B on the expression of AMH was significantly decreased by inhibitors of the SMAD2/3 signaling pathway. These findings show for the first time that AMH production is regulated by oocyte-secreted factors in primary human cumulus cells. Moreover, our novel findings establish that the combination of GDF9 + BMP15 potently stimulates AMH expression.


Assuntos
Hormônio Antimülleriano/metabolismo , Proteína Morfogenética Óssea 15/farmacologia , Células do Cúmulo/efeitos dos fármacos , Fator 9 de Diferenciação de Crescimento/farmacologia , Hormônio Antimülleriano/genética , Células Cultivadas , Células do Cúmulo/metabolismo , Relação Dose-Resposta a Droga , Feminino , Hormônio Foliculoestimulante/farmacologia , Humanos , Cultura Primária de Células , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Regulação para Cima
12.
Endocrinology ; 158(7): 2309-2318, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28407051

RESUMO

Folliculogenesis is a lengthy process that requires the proliferation and differentiation of granulosa cells (GCs) for preovulatory follicle formation. The most crucial endocrine factor involved in this process is follicle-stimulating hormone (FSH). Interestingly, previous in vitro studies indicated that FSH does not stimulate GC proliferation in the absence of the insulinlike growth factor 1 receptor (IGF1R). To determine the role of the IGF1R in vivo, female mice with a conditional knockdown of the IGF1R in the GCs were produced and had undetectable levels of IGF1R mRNA and protein in the GCs. These animals were sterile, and their ovaries were smaller than those of control animals and contained no antral follicles even after gonadotropin stimulation. The lack of antral follicles correlated with a 90% decrease in serum estradiol levels. In addition, under a superovulation protocol no oocytes were found in the oviducts of these animals. Accordingly, the GCs of the mutant females expressed significantly lower levels of preovulatory markers including aromatase, luteinizing hormone receptor, and inhibin α. In contrast, no alterations in FSH receptor expression were observed in GCs lacking IGF1R. Immunohistochemistry studies demonstrated that ovaries lacking IGF1R had higher levels of apoptosis in follicles from the primary to the large secondary stages. Finally, molecular studies determined that protein kinase B activation was significantly impaired in mutant females when compared with controls. These in vivo findings demonstrate that IGF1R has a crucial role in GC function and, consequently, in female fertility.


Assuntos
Fertilidade/genética , Hormônios Esteroides Gonadais/biossíntese , Células da Granulosa/metabolismo , Folículo Ovariano/metabolismo , Receptor IGF Tipo 1/genética , Animais , Sobrevivência Celular/genética , Feminino , Técnicas de Silenciamento de Genes , Insulina/fisiologia , Camundongos , Camundongos Transgênicos , Receptor IGF Tipo 1/metabolismo , Reprodução/genética
13.
Hum Reprod ; 32(4): 905-914, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28158425

RESUMO

Study question: Is the genome-wide response of human cumulus cells to FSH and insulin-like growth factors (IGFs) comparable to the response observed in undifferentiated granulosa cells (GCs)? Summary answer: FSH actions in human cumulus cells mimic those observed in preantral undifferentiated GCs from laboratory animals, and approximately half of the regulated genes are dependent on the simultaneous activation of the IGF1 receptor (IGF1R). What is known already: Animal studies have shown that FSH and the IGFs system are required for follicle growth and maturation. In humans, IGF levels in the follicular fluid correlate with patients' responses to IVF protocols. The main targets of FSH and IGFs in the ovary are the GCs; however, the genomic mechanisms involved in the response of GCs to these hormones are unknown. Study design, size, duration: Human cumulus cells isolated from IVF patients were cultured for 48 h in serum-free media in the presence of vehicle, FSH, IGF1R inhibitor or their combination. Participants/materials, setting, methods: Discarded cumulus cells were donated to research by reproductive-aged women undergoing IVF due to non-ovarian etiologies of infertility at a university-affiliated clinic. The effect of FSH and/or IGF1R inhibition on cumulus cell function was evaluated using Affymetrix microarrays, quantitative PCR, western blot, promoter assays and hormone level measurements. Main results and the role of chance: The findings demonstrate that human cumulus cells from IVF patients respond to FSH with the expression of genes known to be markers of the preantral to preovulatory differentiation of GCs. These results also demonstrate that ~50% of FSH-regulated genes require IGF1R activity and suggest that several aspects of follicle growth are coordinately regulated by FSH and IGFs in humans. This novel approach will allow for future mechanistic and molecular studies on the regulation of human follicle maturation. Large scale data: Data set can be accessed at Gene Expression Omnibus number GSE86427. Limitations, reasons for caution: Experiments were performed using primary human cumulus cells. This may not represent the response of intact follicles. Wider implications of the findings: Understanding the mechanisms involved in the regulation of GC differentiation by FSH and IGF in humans will contribute to improving treatments for infertility. Study funding/competing interest(s): The project was financed by the National Instituted of Health grant number R56HD086054 and R01HD057110 (C.S.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. We have no competing interests to declare.


Assuntos
Hormônio Foliculoestimulante/farmacologia , Células da Granulosa/citologia , Somatomedinas/farmacologia , Biomarcadores/metabolismo , Diferenciação Celular , Células Cultivadas , Células do Cúmulo/citologia , Células do Cúmulo/efeitos dos fármacos , Feminino , Hormônio Foliculoestimulante/metabolismo , Regulação da Expressão Gênica , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Humanos , Folículo Ovariano/crescimento & desenvolvimento , Receptor IGF Tipo 1/metabolismo , Receptor IGF Tipo 1/fisiologia , Somatomedinas/metabolismo
15.
Biol Reprod ; 93(6): 133, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26510866

RESUMO

The surge of luteinizing hormone triggers the genomic reprogramming, cell differentiation, and tissue remodeling of the ovulated follicle, leading to the formation of the corpus luteum. During this process, called luteinization, follicular granulosa cells begin expressing a new set of genes that allow the resulting luteal cells to survive in a vastly different hormonal environment and to produce the extremely high amounts of progesterone (P4) needed to sustain pregnancy. To better understand the molecular mechanisms involved in the regulation of luteal P4 production in vivo, the transcription factors GATA4 and GATA6 were knocked down in the corpus luteum by crossing mice carrying Gata4 and Gata6 floxed genes with mice carrying Cre recombinase fused to the progesterone receptor. This receptor is expressed exclusively in granulosa cells after the luteinizing hormone surge, leading to recombination of floxed genes during follicle luteinization. The findings demonstrated that GATA4 and GATA6 are essential for female fertility, whereas targeting either factor alone causes subfertility. When compared to control mice, serum P4 levels and luteal expression of key steroidogenic genes were significantly lower in conditional knockdown mice. The results also showed that GATA4 and GATA6 are required for the expression of the receptors for prolactin and luteinizing hormone, the main luteotropic hormones in mice. The findings demonstrate that GATA4 and GATA6 are crucial regulators of luteal steroidogenesis and are required for the normal response of luteal cells to luteotropins.


Assuntos
Corpo Lúteo/metabolismo , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA6/genética , Infertilidade Feminina/genética , Luteinização/genética , Progesterona/biossíntese , Animais , Gonadotropina Coriônica/farmacologia , Corpo Lúteo/efeitos dos fármacos , Feminino , Fator de Transcrição GATA4/metabolismo , Fator de Transcrição GATA6/metabolismo , Técnicas de Silenciamento de Genes , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Infertilidade Feminina/metabolismo , Luteinização/efeitos dos fármacos , Luteinização/metabolismo , Camundongos , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo
16.
J Clin Endocrinol Metab ; 100(8): E1046-55, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26066673

RESUMO

CONTEXT: IGF-2 is highly expressed in the granulosa cells of human dominant ovarian follicles; however, little is known about the regulation of the IGF-2 gene or the interaction of IGF-2 and FSH during follicle development. OBJECTIVE: To examine the mechanisms involved in the regulation of the IGF-2 gene by FSH and the interplay between FSH and IGF-2 during granulosa cell differentiation. Design, Setting, Patients, and Interventions: Cumulus granulosa cells were separated from cumulus-oocyte complexes isolated from the follicular aspirates of in vitro fertilization patients and cultured for in vitro studies. MAIN OUTCOME: Protein and mRNA levels of IGF-2 and CYP19A1 (aromatase) were quantified using Western blot and quantitative real-time PCR. IGF-2 promoter-specific activation was determined by the amplification of alternative exons by PCR. Cell proliferation was assessed after treatment with FSH and/or IGF-2. RESULTS: FSH significantly enhanced IGF-2 expression after 8 hours of treatment and at low doses (1 ng/mL). Reciprocally, IGF-2 synergized with FSH to increase cell proliferation and the expression of CYP19A1. When IGF-2 activity was blocked, FSH was no longer able to stimulate CYP19A1 expression. Determination of IGF-2 promoter usage in human cumulus cells showed that the IGF-2 gene is driven by promoters P3 and P4. However, FSH exclusively increased P3 promoter-derived transcripts. Moreover, the FSH-induced stimulation of P3-driven IGF-2 transcripts was blocked by cotreatment with inhibitors of AKT or IGF-1 receptor (IGF-1R). The inhibitory effect of the IGF-1R inhibitor on FSH-induced IGF-2 mRNA accumulation was reversed by overexpression of a constitutively active AKT construct. CONCLUSIONS: FSH is a potent enhancer of IGF-2 expression in human granulosa cells. In return, IGF-2 activation of the IGF-1R and AKT is required for FSH to stimulate CYP19A1 expression and proliferation of granulosa cells. These findings suggest a positive loop interaction between FSH and IGF-2 that is critical for human granulosa cell proliferation and differentiation.


Assuntos
Hormônio Foliculoestimulante/farmacologia , Células da Granulosa/efeitos dos fármacos , Fator de Crescimento Insulin-Like II/genética , Proteína Oncogênica v-akt/fisiologia , Aromatase/genética , Aromatase/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Cultivadas , Células do Cúmulo/efeitos dos fármacos , Células do Cúmulo/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Células da Granulosa/metabolismo , Humanos , Fator de Crescimento Insulin-Like II/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
17.
J Clin Endocrinol Metab ; 99(8): 2995-3004, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24848710

RESUMO

CONTEXT: FSH is routinely administered to in vitro fertilization patients to induce follicle maturation. During this process, granulosa cells differentiate and acquire specific functional characteristics that are required to coordinate ovulation and oocyte maturation. OBJECTIVE: The objective of the study was to gain insight into the molecular mechanisms regulating human granulosa cell differentiation. Design, Setting, Patients, and Interventions: Cumulus and mural granulosa cells were isolated from the follicular aspirates of in vitro fertilization patients and analyzed immediately or cultured in serum-free media in the presence of FSH, IGFs, or an inhibitor of type I IGF receptor (IGF1R) activity. MAIN OUTCOME: We quantified the mRNA and protein levels of steroidogenic enzymes, components of the IGF system, and gonadotropin receptors; measured 17ß-estradiol levels; and examined the activation of intracellular signaling pathways to assess the granulosa cell differentiation as well as the FSH and IGF actions in both cumulus and mural cells. RESULTS: In freshly isolated cells, LH receptor (Lhr) and steroidogenic acute regulator (Star) were expressed at lower levels in cumulus than mural cells, whereas FSH receptor (Fshr) and anti-Müllerian hormone (Amh) were expressed at higher levels in cumulus than mural cells. In vitro, the expression of Igf2, the differentiation markers Lhr, Star, and Cyp19a1 (aromatase) as well as 17ß-estradiol production remained low in untreated cumulus cells but increased significantly after FSH treatment. Strikingly, this stimulatory effect of FSH was abolished by the inhibition of IGF1R activity. FSH-induced activation of v-akt murine thymoma viral oncogene homolog 3 (AKT) required IGF1R activity, and overexpression of constitutively active AKT rescued the induction of differentiation markers and 17ß-estradiol production by FSH in the presence of the IGF1R inhibitor. CONCLUSIONS: The cumulus cell response to FSH resembles the differentiation of preantral to preovulatory granulosa cells. This differentiation program requires IGF1R activity and subsequent AKT activation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células do Cúmulo/efeitos dos fármacos , Hormônio Foliculoestimulante/farmacologia , Proteína Oncogênica v-akt/metabolismo , Receptor IGF Tipo 1/fisiologia , Diferenciação Celular/genética , Células Cultivadas , Células do Cúmulo/fisiologia , Ativação Enzimática/efeitos dos fármacos , Feminino , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/fisiologia , Células HEK293 , Humanos , Transdução de Sinais
18.
Endocrinology ; 154(12): 4845-58, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24064357

RESUMO

Knockdown of the transcription factors GATA4 and GATA6 in granulosa cells (GCs) impairs folliculogenesis and induces infertility. To investigate the pathways and genes regulated by these factors, we performed microarray analyses on wild-type GCs or GCs lacking GATA4, GATA6, or GATA4/6 (G4(gcko), G6(gcko), and G4/6(gcko)) after in vivo treatment with equine chorionic gonadotropin. GATA4 deletion affected a greater number of genes than GATA6, which correlates with the subfertility observed in G4(gcko) mice and the normal reproductive function found in G6(gcko) animals. An even greater number of genes were affected by the deletion of both factors. Moreover, the expression of FSH receptor, LH receptor, inhibin α and ß, versican, pregnancy-associated plasma protein A, and the regulatory unit 2b of protein kinase A, which are known to be crucial for ovarian function, was greatly affected in double GATA4 and GATA6 knockouts when compared with single GATA-deficient animals. This suggests that GATA4 and GATA6 functionally compensate for each other in the regulation of key ovarian genes. Functional enrichment revealed that ovulation, growth, intracellular signaling, extracellular structure organization, gonadotropin and growth factor actions, and steroidogenesis were significantly regulated in G4/6(gcko) mice. The results of this analysis were confirmed using quantitative polymerase chain reaction, immunohistochemical, and biological assays. Treatment of GCs with cAMP/IGF-I, to bypass FSH and IGF-I signaling defects, revealed that most of the affected genes are direct targets of GATA4/6. The diversity of pathways affected by the knockdown of GATA underscores the important role of these factors in the regulation of GC function.


Assuntos
Fator de Transcrição GATA4/metabolismo , Fator de Transcrição GATA6/metabolismo , Inativação Gênica , Células da Granulosa/metabolismo , RNA Mensageiro/metabolismo , Esteroides/metabolismo , Animais , Apoptose/fisiologia , Feminino , Hormônio Foliculoestimulante/genética , Hormônio Foliculoestimulante/metabolismo , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA6/genética , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Camundongos Knockout , Gravidez , RNA Mensageiro/genética , Transdução de Sinais/fisiologia , Transcriptoma
19.
Mol Cell Biol ; 33(15): 2817-28, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23689136

RESUMO

Androgens play a major role in the regulation of normal ovarian function; however, they are also involved in the development of ovarian pathologies. These contrasting effects may involve a differential response of granulosa cells to the androgens testosterone (T) and dihydrotestosterone (DHT). To determine the molecular pathways that mediate the distinct effects of T and DHT, we studied the expression of the liver receptor homolog 1 (LRH-1) gene, which is differentially regulated by these steroids. We found that although both T and DHT stimulate androgen receptor (AR) binding to the LRH-1 promoter, DHT prevents T-mediated stimulation of LRH-1 expression. T stimulated the expression of aryl hydrocarbon receptor (AHR) and its interaction with the AR. T also promoted the recruitment of the AR/AHR complex to the LRH-1 promoter. These effects were not mimicked by DHT. We also observed that the activation of extracellular regulated kinases by T is required for AR and AHR interaction. In summary, T, but not DHT, stimulates AHR expression and the interaction between AHR and AR, leading to the stimulation of LRH-1 expression. These findings could explain the distinct response of granulosa cells to T and DHT and provide a molecular mechanism by which DHT negatively affects ovarian function.


Assuntos
Regulação da Expressão Gênica , Células da Granulosa/metabolismo , Receptores Androgênicos/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Testosterona/metabolismo , Animais , Células Cultivadas , Di-Hidrotestosterona/metabolismo , Feminino , Sistema de Sinalização das MAP Quinases , Regiões Promotoras Genéticas , Ratos , Ratos Sprague-Dawley
20.
Mol Endocrinol ; 27(3): 511-23, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23340251

RESUMO

FSH and IGF-I synergistically stimulate gonadal steroid production; conversely, silencing the FSH or the IGF-I genes leads to infertility and hypogonadism. To determine the molecular link between these hormones, we examined the signaling cross talk downstream of their receptors. In human and rodent granulosa cells (GCs), IGF-I potentiated the stimulatory effects of FSH and cAMP on the expression of steroidogenic genes. In contrast, inhibition of IGF-I receptor (IGF-IR) activity or expression using pharmacological, genetic, or biochemical approaches prevented the FSH- and cAMP-induced expression of steroidogenic genes and estradiol production. In vivo experiments demonstrated that IGF-IR inactivation reduces the stimulation of steroidogenic genes and follicle growth by gonadotropins. FSH or IGF-I alone stimulated protein kinase B (PKB), which is also known as AKT and in combination synergistically increased AKT phosphorylation. Remarkably, blocking IGF-IR expression or activity decreased AKT basal activity and abolished AKT activation by FSH. In GCs lacking IGF-IR activity, FSH stimulation of Cyp19 expression was rescued by overexpression of constitutively active AKT. Our findings demonstrate, for the first time, that in human, mouse, and rat GCs, the well-known stimulatory effect of FSH on Cyp19 and AKT depends on IGF-I and on the expression and activation of the IGF-IR.


Assuntos
Hormônio Foliculoestimulante/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células da Granulosa/enzimologia , Fator de Crescimento Insulin-Like I/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais , Esteroides/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Células da Granulosa/citologia , Células da Granulosa/efeitos dos fármacos , Células HEK293 , Humanos , Camundongos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor IGF Tipo 1/metabolismo , Receptores do FSH/metabolismo , Transdução de Sinais/efeitos dos fármacos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...